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Abstract

We consider the steady state equations for a compressible fluid. Since we wish to solve for a range of

speeds we must consider the equations in conservation form. For transonic speeds these equations are of

mixed type. Hence, the usual approach is to add time derivatives to the steady state equations and then

march these equations in time. One then adds a time derivative of the density to the continuity equation, a

derivative of the momentum to the momentum equation and a derivative of the total energy to the energy

equation. This choice is dictated by the time consistent equations. However, since we are only interested

in the steady state this is not necessary. Thus we shall consider the possibilty of adding a time derivative

of the pressure to the continuity equation and similar modifications for the energy equation. This can then

be generalized to adding combinations of time derivatives to each equation since these vanish in the steady

state. When using acceleration techniques such as residual smoothing, multigrid, etc. these are applied to

the pressure rather than the density. Hence, the code duplicates the behavior of the incompressible equations

for low speeds.
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19480 while the second author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE),

NASA Langley Research Center, Hampton, VA 23681-0001.





Introduction

It is well known, that it is difficult to solve the compressible equations for low Mach numbers. For an

explicit scheme this is easily seen by inspecting the time steps. For stability, the time step must be chosen

inversely proportional to the largest eigenvalue of the system which, for slow flows, is approximately the

speed of sound, c. However, other waves are convected at the fluid speed, u , which is much slower. Hence,

these waves don't change very much over a time step. Thousands of time steps may be required to reach a

steady state. Should one try a multigrid acceleration one finds that the same disparity in wave speeds slows

down the multigrid acceleration. With an implicit method an ADI factorization is generally used so that

one can easily invert the implicit factors. The use of ADI introduces factorization errors which again slows

down the convergence rate when there are wave speeds of very different magnitudes [7] .

We consider systems of the form

wt+ f_+g_=O.

Our analysis will be based on the linearized equations so that the conservation form does not appear in the

analysis though it does appear in the final numerical approximation. This system is now replaced by

P-lwt + f_ + gy = O,

or in linearized form

P-lwt + Aw,: + Bw_ = 0, (1)

with A and B constant matrices.

In order for this system to be equivalent to the original system, in the steady state, we demand that
p-1 have an inverse. This only need be true in the flow regime under consideration. We shall see later that

frequently P is singular at stagnation points and also along sonic lines. Thus, the final preconditioner will

be smoothed out in the vicinity of points where M=0 or M=I.

Assuming the steady state has a unique solution, it does not matter which system we march to a steady
state. We shall later see that for the finite difference approximations the steady state solutions are not

necessarily the same and usually the preconditioned system leads to a better behaved steady state.

The Incompressible Limit

The time dependent two dimensional Euler equations can be written as

Pt + upx -t- vpy + pa2 ( u_: + vy ) = 0

u_ + uu:c + vu_ + p_-- = 0

P

PY 0v_ + uv_ + vv_ +
P

S_ + uS. + vSy = 0

(2)

The form of this system is unchanged if we nondimensionalize the equations. From now on we shall

assume that u, v, p, p are nondimensional quantities where the dimensional variables are nondimensionalized

by u=, p., p.. Following [4] we define e = _'-'-"= M.. If the fluid is isentropic then
a.

2.=2
p'_ p
-- a -- (3)

P = .?,_2 ' C

Hence, as _ goes to zero the speed of sound, a, goes to infinity and so the first equation in (2) reduces to

u_: + vy = O.



Itwas pointed out in ([10], [11]) that these equations can be symmetrized by using _ as the independent

variable rather than dp. Hence, we define ¢ by de = d-a. For isentropic flow both p and a are functions only
pa

2.:.L

of the density and so using (3) this can be integrated explicitly. This gives ¢ = e__.2_ As the Mach number
:z__ _ •

goes to zero ¢ tends to infinity and therefore, Gustafsson and Stoor [4] subtract a constant and define

¢=p _ -1
:L_!e (4)

This amounts to specifying the constant in the integration of de from dp. They then prove, using energy
methods, that

aC)x -.-. _Pincornpressible

Ox

Hence, ¢ and all its derivatives behave as O(M) as M _ O. Since p ---, 1 and using the definition of de this
is equivalent to

dpcompressible "+ dplncornpre,slble (5)

We now consider how to construct a matrix artificial viscosity that will enable us to reach the incom-

pressible limit. Consider

P-'w, + fz + gu = h [(Q,w_)x + (e2wy)_] (6)

We wish to find the dependence of P and Qi on the Mach number as M _ 0 so that we get the proper

convergence. We therefore consider the isentropic equations based on w = (¢, u,v) see (4). This has the
symmetric form

al 1 a12 a13 )

p-lwt --F (112 a22 a23 wx

all a23 a33

bll b12 b13 )
+ b22

bll b23 b33

As M --_ 0, a12 and b13 = O(1/M) while de = O(M) while all other quantities are bounded. Hence, the

leading terms in the first equation are all O(1/M) while they are 0(1) for the second and third equations.

Multiplying the first equation by M and taking the limit we get u_ + v_ for the space derivatives on the left
hand side. Using de = O(M), du = O(1), dv = 0(1) we see that a necessary condition for convergence as
M -- 0 is that P-l, Qi have the form

(0(_--_) 0(_) 0(_))
P-',QI,Q2_ 0(_) 0(i) 0(1) (7)

O(_) O(1) O(1)

The artificial viscosity matrices Qi are related to the preconditioner. Consider the one dimensional

equation

ut + Pf:v _ (IQIu_)_

Let A = 0°--_.Since we are updating Pf we should have Q = PA. However, this is not in conservation form
at the steady state. Instead we consider artificial viscosities of the form

P-_u, + A ~ (P-_(IPAlu,):;

or

u, + Pf_ ~ P(P-I(IPAIu,:)::



This would be equivalent to the original form if P were constant. Instead we have terms like PiP-li+l/2

that appear.

We note that the conditions on the matrix (p-1 IpDI)com p are not satisfied by the non-preconditioned
Roe matrices. Furthermore, even reasonable preconditioners need not satisfy these conditions. Consider, for

example, the one dimensional system

P-lw, + Aw,_ = h(Qw_:)_

A reasonable choice is p-1 = IA I i.e. P = IA-11. In this case all the wave speeds of PA are +1. Now

Q = p-11PA I = IAI i[AI-1AI = IAI ,-,

O(_) O(1) O(1) )
O(1) O(_) O(1) ,

O(1) O(1) O(1)

i.e. Q is the nonpreconditioned Roe matrix which does not have the desired property. We therefore conclude

that for an upwind difference scheme the Riemann solver should be based on the preconditioned system and

not the original scheme. In [3] plots are shown to illustrate the greatly improved accuracy for low Mach
number flows when the Riemann solver is based on the preconditioning. Characteristics in the boundary
conditions these should be based on the characteristics of the modified system and not the physical system.

Preconditioning is even more important when using multigrid than with an explicit scheme. With the original

system the disparity of the eigenvalues greatly affects the smoothing rates of the slow components and so

slows down the multigrid method, [6].
We conclude from the above remarks that the steady state solution of the preconditioned system may

be different from that of the physical system. Thus, on the finite difference level the preconditioning can

improve the accuracy as well as the convergence rate.

In terms

Algorithm

of the primitive variables the preconditioning we consider is:

0 0 0

1 0 0

_-_ 0 1 0
0 0 0 1

"l.l (2

a 1.t

+
0 0

0 0

v 0

0 v
+ a 0

0 0

0 0
0 0

u 0

0 u

a 0

0 0

dv

dS t

dS
_g

v 0

0 v

=0

The nonpreconditioned case corresponds to f12 = a2, c_ = 0. Let q = uo, I 1 "4-Vb;2, then the eigenvalues of PD

are given by

do = q (double)

q
d+ = _ [(1 - a + I32/a2)-4 - (8)

(1 - + Z2/a ): + + -



For general curvilinear coordinates, in the "i" direction wl = yn, w2 = -z v. The time step is bounded by
VOL

d+

Our ultimate goal is to have a compressible code that solves the incompressible equations when the input

Mach number is zero. So we wish to use variables that give us the same result as an incompressible code on

all levels of the algorithm, e.g. flux computation, boundary conditions,acceleration techniques, etc. Hence,
we choose as our basic variables

(')pu
Wp= pv '

E I

pit

F = pu2
+ p,

puv
pHlu

o%
&

where

pt

pu
Q = pv

H'

, G=(

-Pp _-_'x + -_-y

a 2

p' = p-poo ho¢ =
7-1

pv

puv
pv _ + p' ,

pHlv

E' = %p(T- T_)-(p- poo) +

= E+poo -hoop

pHI = El + pl = E + p_ hoop

p&+v 2)

Pp =I+A-
1 --u --v 1

1 A G.._h_ G'-I-ho¢, G-t-h_

-uB2 _ _
G+h_ G4dho,_ G+ho_

-vB2 _ _
G"l-hoo G"t-h_ G+h_,

-B4 _ vB,a+h_ a+hoo a+ho.

where h = cvT =

B1 -

B2 =

B4 =

._L
-v-1 ' G = _2 , A = (a+h°_)z=h , In the appendix we derive this form of Pp.

1 1 1 1

_2 (7-1)h /_2 as
Ot

+

B1H' + a(u2 + v2)

We subtract the constants to keep the quantities in scale. Density is now calculated from the pressure and

total energy. Because the modified energy E I also contains the density we get a quadratic equation for

the density. Choosing the positive square root guarantees that the density is always positive. The residual

smoothing and multigrid are applied to p' and E' rather than p and E. Thus, we duplicate the treatment of

the variables in a pseudo-compressible incompressible code.



Wechoose3 2 = min{max [ill(U2 + v2),_2mi,_] ,a 2} where 3m,n should have the units of speed. The

choice of Brain is discussed in the result section. In all cases a = min 1, _l(u_+v2) . We can evaluate this

,,d¢,,)+vd(p_)-eE'_ _ Thenefficiently by defining S = A. dp -- G+h_ ] = (-y-1)h"

= s
d(pu),_e,_ = d(pu)o,ia - B_uS

d(pv),_,,, = d(pv)o,ia - B2vS
I

dE,_ = dEoria - B4S

These equations are given for the nondimensionalized variables. The nondimensionalization affects the

convergence. In some codes, p and p are fixed in the far field. This implies that the speed of sound, a, is

also bounded. As the Mach number goes to zero the pressure remains of order 1 while the velocities go to

zero. Alternatively, one can nondimensionalize so that the velocities are of order 1 in the far field and then

the pressure and speed of sound go to infinity, unless one subtracts an appropriate constant,

The boundary conditions at the far field boundary, for subsonic flow, are based on the one dimensional

theory of characteristics in the direction normal to the boundary. The preconditioning changes the form of
these characteristic variables. In differential form they are given by

Rl=du .... 2p321 (u(1 a _)

- - + + 4(1 - ep'

(-R2 = du 2p/3 2

+ (u(l-a+_))2+4(1--- 2c2 )8 dp'

where u is the component of the velocity normal to the boundary. If we consider low Mach numbers then

we can approximate these by

dp' dp'

R1 = du + "-_, R2 = du pfl

which is the same as for the incompressible case. Hence, at inflow R1, v (tangential velocity) and S are

specified while R2 is extrapolated from the interior. We then calculate u (normal velocity) and the pressure

from R1 and R2 and then the density and total energy. At outflow the role of specified and extrapolated

quantities is reversed. At solid boundaries the normal momentum equation is used which is not affected by

the preconditioning.

Computational Results

The solution is advanced by a explicit Runge-Kutta method ([5],[8]) with residual smoothing and multigrid

and no enthalpy damping. In all cases three levels of FMG multigrid were used with 50 Runge-Kutta cycles

on the coarser grids. Hence, all plots show the convergence for two sets of 50 cycles and then the convergence

on the finest mesh. The plots are of the convergence rate of the residual of the continuity equation. For the

original code this was updated for the density while in the preconditioned code it is updated for the pressure.

Nevertheless, in the steady state the residual of the continuity equation should be the same except for the

change in the artificial viscosity between the two algorithms. All cases were run with a matrix viscosity.
We first present two calculations for inviscid flow about a NACA 0012. We use a 224 x 32 C mesh

and three levels of multigrid. The first calculation is for inflow conditions M = 0.01, a = 1.25 ° . In this



caseweseethat theresidualasymptoteswithouttheuseof preconditioningandthat the preconditioning
dramaticallyincreasesthe rateof convergence.Theuseof thepreconditioningaddsonlya fewpercent
to thetotal computationaltime. In thesecondcaseweconsiderthesamegeometrybut withan inflow
of M = 0.7, o_ = 1.25 °. We have also done M = 0.8, a = 1.25 ° which results in a minor slowing of the
convergence rate. The preconditioned residual is the dotted line and the original code is the solid line.

Different parameters for the time step and residual smoothing are needed with and without preconditioning.

For inviscid cases we can choose _3,-nin as zero while for the viscous cases _min = 0.4x/u_ + v_. For the
transonic cases the lift and drag coefficients are changed only minimally by the preconditioning.

We next consider viscous flow about a RAE2822 airfoil on a 320 × 64 C mesh and 5 levels of multigrid on

the finest grid with Moo = 0.01, a = 2.79 o using a Baldwin-Lomax turbulence model with Re = 6.5 million.

The residual history is presented in figure 3. Again the standard code converges very slowly for these low

Mach numbers. In figure 4 we present both the preconditioned residual (dashed line) and the original code

(solid line) for the same case but Moo = 0.73. For viscous cases we choose flmi,_ = 0.4. Again, for the

transonic cases the lift and drag are changed by about 2 percent by the preconditioning. For the very low

Mach numbers the lift and drag coefficients never converged for the non-preconditioned algorithm and seem

to have significant errors. The preconditioned code gives much better agrees for lift and drag for low Mach
numbers.

We conclude with a three dimensional case, inviscid flow about an ONERA wing. In figure 5 we display

the convergence rate for the continuity equation (normalized by the initial residual) for Mach numbers .10,

.05 and .01. We see that the convergence rate is independent of the inflow Mach number. In figure 6 we
plot the lift coefficient for the same case. We again see that the lift coefficient is essentially independent

of the Mach number except for some slight compressibility effects. Without preconditioning there are large
variations in the lift for this set of Mach numbers.



Appendix

To find Pv we begin with the preconditioner Ps for the variables dWs = (dp__,du, dr, dS) t, with dS =

dp - a2dp. We then transform to dWs = (dp, du, dr, dS) _ by multiplying all elements in the first row of the

matrix by pa and every element in the first column by 1. This gives

PS 1 =

0 0 0

-q_ 1 0 0

-_ 0 1 0
0 0 0 1

PS =

0 0 0'_
-'_" 1 0 0 J-_" 0 1 0

0 0 1

We then transform to the conservation variables Wc = (p, pu, pv, E) t. This is given by dWc = TldWs. Let

F=7-1

( 1)0 0 -_

p o
" 0 ,,:, -_

M _H
a-": pu pv --T

FG -Fu -Fv F

___ 1 0 0
P P

-_ 0 ! 0
p P

FG-a 2 -Fu -Fv F

where G = _ and a is the speed of sound. This gives the preconditioner in conservation variables.
2

Let Q1 = ('r-1)(_2-a2) Q2 = ('Y-D(°2-0+_)a2) R = _ - 1 + (7 - 1)M_(_ - (_)- Then in
_4 _ _4 _ 42

conservation variables P_ = T1 P sTll,

I+GQ1

uGQ2
Pc = vGQ2

GR

We next change

dW" = T2dWc.

1 0

0 1
T2 = 0 0

-boo 0

-uQ1 -vQ1 Q1

1 - u2Q2 -uvQ2 uQ2 )-uvQ2 1 - v_Q2 vQ:

-uR -vR 1 -t- R

= ' (p, pu, p, E') variables, E' E - ph_ + p_,from wc (p, pu, p, E) variables to wc = =

01)0 0

1 0

0 1

I+GQ1 -uQ1 -vQ1 -Q1 )

uGQ2 1 - u:Q2 -uvQ_ uQ2

vGQ2 -uvQ_ 1 - v2Q2 vQ2
RG -uR -vR 1 + R

Then P_ = T2(T1PsT/1)T_ 1



We finally change only the time derivatives to the variables Wp by dWp = T3dW_.

3 _

F(G+hoo) -Fu -Fv F)

0 1 0 0

0 0 1 0

0 0 0 1

t 1 --u --v l I

F(G+h_) G+h_ G+h_ G+h_

0 1 0 0
T3-1= 0 0 1 0

0 0 0 1

To summarize, we begin with

Ps 10Ws OWs Bs OWs+ As-5-;-+ =o

and transform to

OW_ A¢ OW, Bc aWc= 0
p_-I a______t- Ox nc Oy

We then transform , in conservation form, to the prime variables where E is replaced by E I = E - hoop.
'-1"r-1 : T2TIPs-IT_-IT_IT31. orPp : T3P: -1 T3T2TIPsT_IT_ 1.Finally we then have that p_l = Pc -3 :

Thus,

Pp_
h

-vAB2 _ 1+
h h

-- AB4 u-u-u-u-u-u-u-u-u-_a2 B " _ 1-
h h h

where all quantities were defined in the text.

We next show how to convert any preconditioner given in streamline coordinates and (pd--_a, du, dr, dS)
coordinates to conservative variables in Cartesian (not streamwise) coordinates. We shall do this in two

dimensions but the extension to three dimensions is straightforward. Assume we are given a preconditioner

in streamline coordinates and (pd_, du, dr, dS) coordinates Ps given by

PS =
Pll P12 0 0 )

P21 P22 0 0

0 0 P33 0

0 0 0 Ps5

We define rotation matrices U, U-1 to get P in Cartesian coordinates.

U

1 0 0 0)

0 cosO sinO 0

0 -sinO cosO 0

0 0 0 1

u- l .__

1 0 0 O)

0 cosO -sinO 0

0 sinO cosO 0

0 0 0 1

Let q2 = u 2 + v 2. To get the streamwise direction we shall choose

It V
cosO -- sinO --

v_ + v2 _ v2



Then the preconditioner in Cartesian coordinates is given by Pcar = U-1Ps U and

Pear ----

p u _ 0P11 12; P12;

o
P oP21_ _22- 331_-

0 0 0 Pss

Qll QI_ Q13 0
Q21 Q22 Q23 0
Q3_ Q32 Q33 0

0 0 0 Qss

We next introduce conservative variables Wc as given in the appendix by the transformation T1.

preconditioner for conservative variables is then given by Pc = T1PcarT1-1

We now define the following quantities

The

Y2 =

Y3 =

Y4 =

Y5 =

G -

L =

Zll -

Z12

Z13

Z14

Z15

Z51

Z52

Zs3

Z54

Zs5

w

uQ21 4- vQ31 .-b wQ41

uQ22 + vQ32 + wQ4_

uQ23 --F vQ33 4- wQ43

uQ24 "4- vQ34 + wQ44

(7 - 1)(Q5_ - Qll)

(7- 1)q:

2

(7 - 1)p

pa 2 p

I Q12
uY5 + --

pa 2 p

1 Q:3
vY5 + --

pa 2 p

1 Q14
wYs + --

pa 2 p
1

-- -- Y5
pa 2

HZ11 + GY1 - uY2 - vY3 - wY4

q2 a_
+Qss(

2 7- l J

HZI: - (7 - 1)puY1 + Y2 - uQss

HZ13 - (7 - 1)prY1 + Y3 - uQs5

HZ14 - (7 -- 1)pwY1 + Y4 -- uQ55

HZts + (7 - 1)pQss



Then

Pc _-.

Z11

UZll "{" GQ21 -- Y2

VZll q- GQ31 - Y3

wgll + GQ41 - Y4

Zs I

Z13

uZ13 -- RvO21 -t- Q23

vZ13 - RvQ31 "1- Q33

wZ13 - RvQ41 + Q43

Z53

zl )
uZls + RQ21

vZ15 -t- RQ31

wZls + RQ41

Z55

Z12

uZ12 -- RuQ21 + Q22

vZl2 -- RuQ31 + Q32

wgl2 - RuQ41 + Q42

Z52

Z14

uZa4 - RwQ21 + Q24

VZl4 -- RwQ31 q- Q34

wZ,4 - RwQ4a + Q44
Z54
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Figure 1: Convergence rate for inviscid flow about a NACA0012 with M¢¢ = 0.01 and a = 1.25 o
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Figure 2: Same as figure 1 with Moo = 0.70 and a = 1.25 °, dotted line is preconditioned scheme
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Figure 3: Convergence rate for viscous flow about a RAE2822 airfoil with M_ = 0.01 and a = 2.79 ° Solid
line is original algorithm and dashed line is the preconditioned scheme
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Figure 4: Convergence rate for viscous flow about a RAE2822 airfoil with M_ = 0.73 and a = 2.79 °. Solid

line is original algorithm and dashed line is the preconditioned scheme
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Figure 5: Convergence rate for inviscid flow about ONERA wing, Mo¢ = .10, .05, .01, a = 3.06 o
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Figure 6: Lift coefficient for inviscid flow about a ONERA wing.

13



FormApproved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Publicreportingburdenforthscoectonof nformation;sestimatedtoaverage1hourperresponse,includingthetime/orreviewinginstructions,searchingexistingdatasources,
gatheringandmantanngthedataneeded,andcompletingandreviewingthecollectionofinformation.Sendcommentsregardingthisburdenestimateoranyotheraspectofthis
collectionofinformation,ncludingsuggestionsforreducingthisburden,toWashingtonHeadquartersServices,DirectorateforInformationOperationsandReports,1215Jefferson
DavisHighway.Suite1204.Arlington.VA22202-4302,andtotheOfficeof ManagementandBudget.PaperworkReductionProject(0704-0188),Washngton,DE 20503.

1. AGENCY USE ONLY(Leaveb/ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1995 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

PRESSURE UPDATING METHODS FOR THE STEADY-STATE

FLUID EQUATIONS

6. AUTHOR(S)

A. Fiterman

E. Turkel

V. Vatsa

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 95-40

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-198163

ICASE Report No. 95-40

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

To appear in the Proc. of the AIAA CFD Conference

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

12b. DISTRIBUTION CODE

Subject Category 64

13. ABSTRACT (Maximum 200 words)
We consider the steady state equations for a compressible fluid. Since we wish to solve for a range of speeds we

must consider the equations in conservation form. For transonic speeds these equations are of mixed type. Hence,

the usual approach is to add time derivatives to the steady state equations and then march these equations in time.
One then adds a time derivative of the density to the continuity equation, a derivative of the momentum to the

momentum equation and a derivative of the total energy to the energy equation. This choice is dictated by the

time consistent equations. However, since we are only interested in the steady state this is not necessary. Thus

we shall consider the possibilty of adding a time derivative of the pressure to the continuity equation and similar

modifications for the energy equation. This can then be generalized to adding combinations of time derivatives to

each equation since these vanish in the steady state. When using acceleration techniques such as residual smoothing,

multigrid, etc. these are applied to the pressure rather than the density. Hence, the code duplicates the behavior of

the incompressible equations for low speeds.

14. SUBJECT TERMS

Preconditioning; Low Mach Flows; Euler Equations

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE
U nclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

15. NUMBER OF PAGES

15

16. PRICE CODE

A03

20. LIMITATION
OF ABSTRACT

Standard Form298(Rev. 2-89)
PrescribedbyANSIStd. Z39-18
298-102


